Electrical Engineering (BSEE)

Catalog Year

2019-2020

Degree

Bachelor of Electrical Engineering

Total Credits

128

Locations

Mankato

Accreditation

Engineering Accreditation Commission of ABET

Accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Program Requirements

Required General Education

From an engineering perspective, concepts of general chemistry will be investigated. Topics include atomic structure, stiochiometry, gas laws, periodic trends chemical bonds, thermodynamics, kinetics and organic chemistry.

Prerequisites: High school chemistry or “C” (2.0) or higher in CHEM 104. Student must demonstrate math placement requirements at or above MATH 115 in the placement chart. See Mathematics for details.

Goal Areas: GE-02, GE-03

This course helps students develop a flexible writing process, practice rhetorical awareness, read critically to support their writing, research effectively, represent others ideas in multiple ways, reflect on their writing practices, and polish their work.

Prerequisites: none

Goal Areas: GE-1A

Introduction to learning the written and oral communication of technical information. Assignments include writing and presenting proposals, reports, and documentation. Emphasis on use of rhetorical analysis, computer applications, collaborative writing, and usability testing to complete technical communication tasks in the workplace.

Prerequisites: ENG 101 

Goal Areas: GE-02, GE-13

Limits, continuity, the derivative and applications, transcendental functions, L'Hopital's Rule, and development of the Riemann integral.

Prerequisites: Satisfy Placement Table in this section, MATH 115 or both MATH 112 and MATH 113 with “C” (2.0) or better.

Goal Areas: GE-04

Designed for science and engineering students. Calculus-based physics. Covers elementary mechanics including kinematics, statics, equilibrium and dynamics of particles, work and energy, rotational motion, gravitation, and oscillation. Lecture and Laboratory. Prereq: MATH 121 with a C or better; and high school physics or PHYS 101. Fall, Spring

Prerequisites: MATH 121 with a “C” or better; and high school physics or PHYS 101 Fall, Spring

Goal Areas: GE-02, GE-03

Economics - Choose 3 Credit(s).

Emphasis on forces influencing employment and inflation. Current problems of the economy are stressed along with tools government has to cope with them.

Prerequisites: none

Goal Areas: GE-05

Examines decision making by the individual firm, the determination of prices and wages, and current problems facing business firms.

Prerequisites: none

Goal Areas: GE-05

Prerequisites to the Major

This introductory course covers digital systems topics including binary numbers, logic gates, Boolean algebra, circuit simplification using Karnaugh maps, flip-flops, counters, shift registers and arithmetic circuits. Problem solving methods, study skills and professional development will be addressed throughout the course.

Prerequisites: MATH 112

his course presents algorithmic approaches to problem solving and computer program design using the C language. Students will explore Boolean expressions, implement programs using control structures, modular code and file input/output, and interface with external hardware using robots and sensors.

Prerequisites: EE 106

This course is meant to develop Electrical Engineering Circuit Analysis skills in DC and AC circuits. It includes circuit laws and theorems, mesh and node analysis. Natural and step response of RL, RC, and RLC circuits.

Prerequisites: PHYS 222 or concurrent, MATH 321 or concurrent

Continuation of Circuit Analysis I to include special topics in circuit analysis.

Prerequisites: EE 230 and EE 240, MATH 321, PHYS 222 

A course that teaches how to write computer assembly language programs, make subroutine calls, perform I/O operations, handle interrupts and resets, interface with a wide variety of peripheral chips to meet the requirements of applications.

Prerequisites: EE 106, EE 107

Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design.

Prerequisites: EE 106, EE 107

Laboratory support for EE 230. Use of laboratory instrumentation to measure currents and voltages associated with DC and AC circuits. Statistical analysis of measurement data. Measurements of series, parallel and series-parallel DC and AC circuits. Measurement of properties for circuits using operational amplifiers. Measurement of transient responses for R-L and R-C circuits. Simulation of DC and AC circuits using PSPICE. Concepts covered in EE 230 will be verified in the laboratory. Pre-req: Must be taken concurrently with EE 230.

Prerequisites: Must be taken concurrently with EE 230. 

Techniques of integration, applications of integration, improper integrals, numerical integration, the calculus of parametric curves, infinite series and sequences, and vectors in two and three dimensions.

Prerequisites: MATH 121 with “C” (2.0) or better or consent 

This course presents the theory, computations, and applications of first and second order differential equations and two-dimensional systems.

Prerequisites: MATH 122 with “C” (2.0) or better or consent

Designed for science and engineering students. Calculus-based physics. Covers electrical charge and field; magnetic field and its sources; current and resistance; simple DC and AC circuits; and electromagnetic induction. Lecture only. (Associated laboratory course is PHYS 232.) Prereq: MATH 122 with a C or better; and PHYS 221 with a C or better. Fall, Spring

Prerequisites: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better. 

Designed for science and engineering students. Laboratory course accompanying PHYS 222. Experiments involving electric and magnetic fields, electric potential, electric and magnetic forces, and simple circuits. Laboratory only. Prereq: PHYS 221 with a C or better; and PHYS 222 or concurrent. Fall, Spring

Prerequisites: PHYS 221 with a “C” or better; and PHYS 222 or concurrent.

Major Common Core

This is the lab associated with EE231 class giving students hands on experience of building and testing AC circuits

Prerequisites: EE, 230, EE 231, EE 240

Introduction to representing digital hardware using a hardware description language. Introduction to implementation technologies such as PAL's, PLA's, FPGA's and Memories. Analysis, synthesis and design of sequential machines; synchronous, pulse mode, asynchronous and incompletely specified logic.

Prerequisites: EE 106, EE 107

Laboratory support for EE 282 practical aspects of design and analysis of different types of sequential machines will be presented through laboratory experience.

Prerequisites: none

Introduction to crystal structure, energy band theory, conduction and optical phenomenon in semiconductors, metals and insulators. Study of equilibrium and non-equilibrium charge distribution, generation, injection, and recombination. Analysis and design of PN-junctions, (bipolar transistor, junction) and MOS field-effect transistors. Introduction to transferred electron devices and semiconductor diode laser.

Prerequisites: PHYS 222, and MATH 321 

Laboratory support for EE 303. Experiments include resistivity and sheet resistance measurements of semiconductor material, probing material, probing of IC chips, PN-junction IV and CV measurements, BJT testing to extract its parameters, MOSFET testing and evaluating its parameters, cv-measurements of MOS structure, and familiarization with surface analysis tools.

Prerequisites: none

Introduction to discrete and microelectronics circuits including analog and digital electronics. Device characteristics including diodes, BJTs, JFETs, and MOSFETs will be studied. DC bias circuits, small and large signal SPICE modeling and analysis and amplifier design and analysis will be discussed.

Prerequisites: EE 231

This second course of the electronics sequence presenting concepts of feedback, oscillators, filters, amplifiers, operational amplifiers, hysteresis, bi-stability, and non-linear functional circuits. MOS and bipolar digital electronic circuits, memory, electronic noise, and power switching devices will be studied.Spring

Prerequisites: EE 332 

Electrical and computer engineering project and program management and evaluation techniques will be studied. Emphasis will be placed on the use of appropriate tools for planning, evaluation, and reporting on electrical and computer engineering projects.Prereq: Junior Standing and Admission into the Electrical or Computer Engineering program.

Prerequisites: Junior Standing

Application of the design techniques in the engineering profession. Electrical engineering project and program management and evaluation including computer assisted tools for planning and reporting, design-to-specification techniques and economic constraints.

Prerequisites: EE 336

Analysis of linear systems and signals in the time and frequency domain. Laplace and Fourier transforms. Z-transform and discrete Fourier transforms.

Prerequisites: EE 230. MATH 321 and PHYS 222

This lab is designed to accompany EE 332. The lab covers the experimental measurement and evaluation of diode, BJT, and MOS characteristics; various feedback topologies; oscillator and op-amp circuits; and rectifiers and filter circuitry.

Prerequisites: EE 231 and EE 332 taken concurrently.

This course will accompany EE 333 course dealing with laboratory experience of designing, evaluating and simulation of source and emitter coupled logic circuits, output stages and power amplifiers, negative feedback amplifiers, oscillator circuits, Multivibrators, Schmidt Trigger, 555 timer application to Multivibrators, Memory circuits, CMOS logic circuits, signal generating and waveform shaping circuits.

Prerequisites: EE 332, EE 333

Vector fields. Electrostatic charges, potential and fields; displacement. Steady current/current density; magnetostatic fields, flux density. Materials properties. Faraday's Law and Maxwell's equations. Skin effect. Wave propagation, plane waves, guided waves. Radiation and antennas. Transmission line theory.

Prerequisites: EE 231, MATH 223, MATH 321 and PHYS 222

Signals and Systems, Fourier transforms, Parseval's theorem. Autocorrelation functions and spectral density functions. Information theory. Noise and noise figure, probability and statistics. Transformation of random variables, probability of error and bit error rate. Modulation and demodulation. Overview of analog, sampled analog and digital communication systems. Spread spectrum systems.

Prerequisites: EE 341, MATH 223

Theory and principles of linear feedback control systems. Analysis of linear control systems using conventional techniques like block diagrams, Bode plots, Nyquist plots and root-locus plots. Introduction to cascade compensation: proportional, derivative and integral compensation. State space models.

Prerequisites: EE 341 

Measurement techniques using the oscilloscope, spectrum analyzer and network analyzer. Signals and spectra. Frequency response. Noise and noise figure measurements. Intermodulation products. Amplitude and frequency modulation/demodulation. Sampling, aliasing, and intersymbol interference. Bit error measurement.

Prerequisites: Concurrent with EE 353

Laboratory support for EE 358. Experimental evaluation of basic control system concepts including transient response and steady state performance. Analog and digital computers.

Prerequisites: EE 341 and concurrent with EE 358

Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of financial statements, time value of money, decision making tools, cost of capital, depreciation, project anaysis and payback, replacement analysis, and other engineering decision making tools.

Prerequisites: Advanced standing in the program

The design and organization of engineering projects. Project proposals, reporting, feasibility studies, and interpretation. Specification preparation, interpretation, and control. Issues involving creativity, project planning and control, and intellectual property rights. Students enrolled in this course must initiate and complete a design project in a small team format.

Prerequisites: EE 337 and senior standing 

Completion of design projects and reports. Lectures on ethics, issues in contracting and liability, concurrent engineering, ergonomics and environmental issues, economics and manufacturability, reliability and product lifetimes. Lectures by faculty and practicing engineers.

Prerequisites: EE 467 and Senior Standing

Electrical power and magnetic circuit concepts, switch-mode converters, mechanical electromechanical energy conversion, DC motor drives, feedback controllers, AC machines and space vectors, permanent magnet AC machines and drives, induction motors and speed control of induction motors, stepper motors.

Prerequisites: EE 230 

Surfaces, vector-valued functions, partial differentiation, multiple integration, and vector calculus.

Prerequisites: MATH 122 with “C” (2.0) or better, or consent

Designed for science and engineering students. Calculus-based physics. Covers fluids, thermodynamics, mechanical and sound waves, geometrical optics, physical optics, and modern physics. Lecture only. (Associated laboratory course is PHYS 233.) Pre: MATH 122 with a Cor better; and PHYS 221 with a C or better. Spring

Prerequisites: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better.

Designed for science and engineering students. Laboratory course accompanying PHYS 223. Experiments involving fluids, thermodynamics, mechanical waves, geometrical optics, and physical optics. Laboratory only. Prereq: PHYS 221 with a C or better; and PHYS 223 or concurrent. Spring

Prerequisites: PHYS 221 with a “C” or better; and PHYS 223 or concurrent.

Major Restricted Electives

A more advanced study of microprocessors and microcontrollers in embedded system design. Use of C language in programming, interrupt interfaces such as SPI, I2C, and CAN. External memory design and on-chip program memory protection are also studied.

Prerequisites: none

Laboratory support for EE 334. Use of development boards and C programming language to handle I/O devices, interrupts, and all peripheral functions. Multiple functions such as timers, A/D converters, I/O devices, interrupts, and serial modules will be used together to perform desired operations.

Prerequisites: Concurrent with EE 334

Behavior of analog systems and digital systems in the presence of noise, principles of digital data transmission, baseband digital modulation, baseband demondulation/detection, bandpass mondulation and demodulation of digital signals. Channel coding, modulation and coding trade-offs, spread spectrum techniques, probability and information theory.

Prerequisites: EE 353 and EE 363 

This course is a continuation of EE 358. Techniques for the analysis of continuous and discrete systems are developed. These techniques include pole placement, state estimation, and optimal control.

Prerequisites: EE 358 and EE 368 

Develop design and analysis techniques for discrete signals and systems via Z-transforms, Discrete Fourier Transforms, implementation of FIR and IIR filters. The various concepts will be introduced by the use of general and special purpose hardware and software for digital signal processing.

Prerequisites: EE 341 

Power generation, transmission and consumption concepts, electrical grid modeling, transmission line modeling, electric network power flow and stability, fault tolerance and fault recovery, economic dispatch, synchronous machines, renewable energy sources and grid interfacing.

Prerequisites: EE 231 or via permission from instructor

This course is designed to provide students with knowledge of the design and analysis of static power conversion and control systems. The course will cover the electrical characteristics and properties of power semiconductor switching devices, converter power circuit topologies, and the control techniques used in the applications of power electronic systems. Laboratories consist of computer-based modeling and simulation exercises, as well as hands-on laboratory experiments on basic converter circuits and control schemes.

Prerequisites: EE 333

Introduction to theory and techniques of integrated circuit fabrication processes, oxidation, photolithography, etching, diffusion of impurities, ion implantation, epitaxy, metallization, material characterization techniques, and VLSI process integration, their design and simulation by SUPREM.

Prerequisites: EE 303 and EE 332

Principles of electromagnetic radiation, antenna parameters, dipoles, antenna arrays, long wire antennas, microwave antennas, mechanisms of radiowave propagation, scattering by rain, sea water propagation, guided wave propagation, periodic structures, transmission lines, microwave/millimeter wave amplifiers and oscillators, MIC & MMIC technology.

Prerequisites: EE 350 

Magnetic and superconducting properties of materials, microscopic theory of superconductivity and tunneling phenomenon. Josephson and SQUID devices, survey of computer memories, memory cell and shift register, A/D converters and microwave amplifiers. Integrated circuit technology and high temperature superconductors.

Prerequisites: EE 303 

Introduction to integrated circuit fabrication processes, device layout, mask design, and experiments related to wafer cleaning, etching, thermal oxidation, thermal diffusion, photolithography, and metallization. Fabrication of basic integrated circuit elements pn junction, resistors, MOS capacitors, BJT and MOSFET in integrated form. Use of analytic tools for in process characterization and simulation of the fabrication process by SUPREM.

Prerequisites: Concurrent with EE 475

This laboratory accompanies EE 484. The laboratory covers the basics of layout rules, chip floor planning, the structure of standard cells and hierarchical design, parasitic elements, routing, and loading. Students will learn to design and layout standard cells as well as how to use these cells to produce complex circuits. The laboratory culminates with the individual design and layout of a circuit.

Prerequisites: Concurrent with EE 484

his course covers cutting-edge areas of the study in smart grid and power systems. This course will cover fundamentals of power flow calculation, wind power and its integration, solar power and its integration, distributed generation sources, energy storage devices and electric vehicles. The basic ideas of the integration of microgrid with distribution networks, the demand response and demand side management, and electricity market will be introduced. Moderate work of programming in professional power systems software tools, PowerWorld and PSCAD will be required.

Prerequisites: EE333

The basics of digital VLSI technology. Bipolar and MOS modeling for digital circuits. Physical transistor layout structure and IC process flow and design rules. Custom CMOS/BICMOS static and dynamic logic styles, design and analysis. Clock generation, acquisition, and synchronization procedures. Special purpose digital structures including memory, Schmitt triggers, and oscillators. Individual design projects assigned.

Prerequisites: EE 333 

This course focuses on CMOS Application Specific Integrated Circuit (ASIC) design of Very Large Scale Integration (VLSI) systems. The student will gain an understanding of issues and tools related to ASIC design and implementation. The coverage will include ASIC physical design flow, including logic synthesis, timing, floor-planning, placement, clock tree synthesis, routing and verification. An emphasis will be placed on low power optimization. The focus in this course will be Register-transfer level (RTL) abstraction using industry-standard VHDL/Verilog tools.

Prerequisites: EE 484

Overview of wireless communication and control systems. Characterization and measurements of two-port RF/IF networks. Transmission lines. Smith chart. Scattering parameters. Antenna-preselector-preamplifier interface. Radio wave propagation. Fading. RF transistor amplifiers, oscillators, and mixer/modulator circuits. Multiple access techniques. Transmitter/receiver design considerations. SAW matched filters.

Prerequisites: EE 353 and EE 363 

This course introduces students the recent advances in real-time embedded systems design. Topics cover real-time scheduling approaches such as clock-driven scheduling and static and dynamic priority driven scheduling, resource handling, timing analysis, inter-task communication and synchronization, real-time operating systems (RTOS), hard and soft real-time systems, distributed real-time systems, concepts and software tools involved in the modeling, design, analysis and verification of real-time systems.

Prerequisites: EE 107, EE 334, EE 395

Other Graduation Requirements

Choose ten (10) credits from Major Restricted Electives. Choose a minimum of twelve (12) credits from Humanities (6 credits) and Social Sciences (6 credits) courses. For a complete listing of approved Humanities and Social Science courses, please consult the department website. In general, graduation credit toward the Humanities requirement is not allowed for any course in subject areas such as communication studies, writing, art, music, or theatre that involve performance or practice of basic skills. At least three (3) credits of the courses selected to complete the above requirements must be 300-level or above. At least one 300-level course must follow a lower level course in the same subject area.

Analysis/Probability and Statistics - Choose 3 Credit(s).

A calculus based introduction to probability and statistics. Topics include probability, random variables, probability distributions (discrete and continuous), joint probability distributions (discrete and continuous), statistical inference (both estimation and hypothesis testing), confidence intervals for distribution of parameters and their functions, sample size determinations, analysis of variance, regression, and correlation. This course meets the needs of the practitioner and the person who plans further study in statistics.

Prerequisites: MATH 122 with “C” (2.0) or better or consent

Probability and statistics. Uncertainty, distributions. Numerical solution of algebraic, transcendental and differential equations. Numerical integration and differentiation. Structured programming language required. Prerequisite: CIVE 201 or ME 201 or EE107 with C (2.0) or better, ME 212 Co-requisite: MATH 321 Fall, Spring

Prerequisites: ME 212. Select one course from CIVE 201, EE 107, or ME 201 with "C" (2.0) or better).

Business/Finance - Choose 3 Credit(s).

Application of law to business settings; the American court system; alternative dispute resolution; ethics and the social responsibility of business; fundamentals of legal reasoning; sources of law; constitutional, criminal, tort, and contract law; business associations.

Prerequisites: none

An introduction to finance relating to problems, methods, and policies in financing business enterprise.

Prerequisites: ACCT 200, Jr. Standing

This course examines basic management concepts and principles, their historical development, and their application to modern organizations. Topics covered include planning, organizing, decision making, leadership, control, and organizational change. In addition, the course includes an introduction to business ethics and social responsibility, human resource management, organizational design and organizational behavior.

Prerequisites: none

This course examines the effective management of the human resources of organizations. Topics include analyzing jobs and writing job descriptions; recruiting and hiring of applicants; complying with employment law; managing promotions, quits, and layoffs; employee training and development; evaluating job performance; determining compensation; and managing human resources in a unionized environment.

Prerequisites: none

This course provides a basic understanding of marketing concepts with emphasis on the pricing, promotion, and distribution of need satisfying products and services in domestic and international markets. The format of the course consists of lectures, case discussions, application exercises, projects, exams, and in-class group assignments.

Prerequisites: none

Minor

No minor or other major accepted toward the degree.

4-Year Plan

The 4-Year Plan is a model for completing your degree in a timely manner. Your individual 4-Year plan may change based on a number of variables including transfer courses and the semester/year you start your major. Carefully work with your academic advisors to devise your own unique plan.
* Please meet with your advisor on appropriate course selection to meet your educational and degree goals.

First Year

Fall - 17 Credits

This course helps students develop a flexible writing process, practice rhetorical awareness, read critically to support their writing, research effectively, represent others ideas in multiple ways, reflect on their writing practices, and polish their work.

Prerequisites: none

Goal Areas: GE-1A

This introductory course covers digital systems topics including binary numbers, logic gates, Boolean algebra, circuit simplification using Karnaugh maps, flip-flops, counters, shift registers and arithmetic circuits. Problem solving methods, study skills and professional development will be addressed throughout the course.

Prerequisites: MATH 112

Limits, continuity, the derivative and applications, transcendental functions, L'Hopital's Rule, and development of the Riemann integral.

Prerequisites: Satisfy Placement Table in this section, MATH 115 or both MATH 112 and MATH 113 with “C” (2.0) or better.

Goal Areas: GE-04

From an engineering perspective, concepts of general chemistry will be investigated. Topics include atomic structure, stiochiometry, gas laws, periodic trends chemical bonds, thermodynamics, kinetics and organic chemistry.

Prerequisites: High school chemistry or “C” (2.0) or higher in CHEM 104. Student must demonstrate math placement requirements at or above MATH 115 in the placement chart. See Mathematics for details.

Goal Areas: GE-02, GE-03

General Education Course * 3 credits

Spring - 18 Credits

his course presents algorithmic approaches to problem solving and computer program design using the C language. Students will explore Boolean expressions, implement programs using control structures, modular code and file input/output, and interface with external hardware using robots and sensors.

Prerequisites: EE 106

Techniques of integration, applications of integration, improper integrals, numerical integration, the calculus of parametric curves, infinite series and sequences, and vectors in two and three dimensions.

Prerequisites: MATH 121 with “C” (2.0) or better or consent 

Designed for science and engineering students. Calculus-based physics. Covers elementary mechanics including kinematics, statics, equilibrium and dynamics of particles, work and energy, rotational motion, gravitation, and oscillation. Lecture and Laboratory. Prereq: MATH 121 with a C or better; and high school physics or PHYS 101. Fall, Spring

Prerequisites: MATH 121 with a “C” or better; and high school physics or PHYS 101 Fall, Spring

Goal Areas: GE-02, GE-03

Introduction to learning the written and oral communication of technical information. Assignments include writing and presenting proposals, reports, and documentation. Emphasis on use of rhetorical analysis, computer applications, collaborative writing, and usability testing to complete technical communication tasks in the workplace.

Prerequisites: ENG 101 

Goal Areas: GE-02, GE-13

General Education Course * 3 credits

Second Year

Fall - 16 Credits

Designed for science and engineering students. Calculus-based physics. Covers electrical charge and field; magnetic field and its sources; current and resistance; simple DC and AC circuits; and electromagnetic induction. Lecture only. (Associated laboratory course is PHYS 232.) Prereq: MATH 122 with a C or better; and PHYS 221 with a C or better. Fall, Spring

Prerequisites: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better. 

This course is meant to develop Electrical Engineering Circuit Analysis skills in DC and AC circuits. It includes circuit laws and theorems, mesh and node analysis. Natural and step response of RL, RC, and RLC circuits.

Prerequisites: PHYS 222 or concurrent, MATH 321 or concurrent

Designed for science and engineering students. Laboratory course accompanying PHYS 222. Experiments involving electric and magnetic fields, electric potential, electric and magnetic forces, and simple circuits. Laboratory only. Prereq: PHYS 221 with a C or better; and PHYS 222 or concurrent. Fall, Spring

Prerequisites: PHYS 221 with a “C” or better; and PHYS 222 or concurrent.

A course that teaches how to write computer assembly language programs, make subroutine calls, perform I/O operations, handle interrupts and resets, interface with a wide variety of peripheral chips to meet the requirements of applications.

Prerequisites: EE 106, EE 107

Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design.

Prerequisites: EE 106, EE 107

Laboratory support for EE 230. Use of laboratory instrumentation to measure currents and voltages associated with DC and AC circuits. Statistical analysis of measurement data. Measurements of series, parallel and series-parallel DC and AC circuits. Measurement of properties for circuits using operational amplifiers. Measurement of transient responses for R-L and R-C circuits. Simulation of DC and AC circuits using PSPICE. Concepts covered in EE 230 will be verified in the laboratory. Pre-req: Must be taken concurrently with EE 230.

Prerequisites: Must be taken concurrently with EE 230. 

This course presents the theory, computations, and applications of first and second order differential equations and two-dimensional systems.

Prerequisites: MATH 122 with “C” (2.0) or better or consent

Spring - 16 Credits

Surfaces, vector-valued functions, partial differentiation, multiple integration, and vector calculus.

Prerequisites: MATH 122 with “C” (2.0) or better, or consent

Designed for science and engineering students. Calculus-based physics. Covers fluids, thermodynamics, mechanical and sound waves, geometrical optics, physical optics, and modern physics. Lecture only. (Associated laboratory course is PHYS 233.) Pre: MATH 122 with a Cor better; and PHYS 221 with a C or better. Spring

Prerequisites: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better.

Continuation of Circuit Analysis I to include special topics in circuit analysis.

Prerequisites: EE 230 and EE 240, MATH 321, PHYS 222 

Designed for science and engineering students. Laboratory course accompanying PHYS 223. Experiments involving fluids, thermodynamics, mechanical waves, geometrical optics, and physical optics. Laboratory only. Prereq: PHYS 221 with a C or better; and PHYS 223 or concurrent. Spring

Prerequisites: PHYS 221 with a “C” or better; and PHYS 223 or concurrent.

This is the lab associated with EE231 class giving students hands on experience of building and testing AC circuits

Prerequisites: EE, 230, EE 231, EE 240

Introduction to representing digital hardware using a hardware description language. Introduction to implementation technologies such as PAL's, PLA's, FPGA's and Memories. Analysis, synthesis and design of sequential machines; synchronous, pulse mode, asynchronous and incompletely specified logic.

Prerequisites: EE 106, EE 107

Laboratory support for EE 282 practical aspects of design and analysis of different types of sequential machines will be presented through laboratory experience.

Prerequisites: none

Third Year

Fall - 15 Credits

Introduction to crystal structure, energy band theory, conduction and optical phenomenon in semiconductors, metals and insulators. Study of equilibrium and non-equilibrium charge distribution, generation, injection, and recombination. Analysis and design of PN-junctions, (bipolar transistor, junction) and MOS field-effect transistors. Introduction to transferred electron devices and semiconductor diode laser.

Prerequisites: PHYS 222, and MATH 321 

Laboratory support for EE 303. Experiments include resistivity and sheet resistance measurements of semiconductor material, probing material, probing of IC chips, PN-junction IV and CV measurements, BJT testing to extract its parameters, MOSFET testing and evaluating its parameters, cv-measurements of MOS structure, and familiarization with surface analysis tools.

Prerequisites: none

Introduction to discrete and microelectronics circuits including analog and digital electronics. Device characteristics including diodes, BJTs, JFETs, and MOSFETs will be studied. DC bias circuits, small and large signal SPICE modeling and analysis and amplifier design and analysis will be discussed.

Prerequisites: EE 231

Electrical and computer engineering project and program management and evaluation techniques will be studied. Emphasis will be placed on the use of appropriate tools for planning, evaluation, and reporting on electrical and computer engineering projects.Prereq: Junior Standing and Admission into the Electrical or Computer Engineering program.

Prerequisites: Junior Standing

Analysis of linear systems and signals in the time and frequency domain. Laplace and Fourier transforms. Z-transform and discrete Fourier transforms.

Prerequisites: EE 230. MATH 321 and PHYS 222

This lab is designed to accompany EE 332. The lab covers the experimental measurement and evaluation of diode, BJT, and MOS characteristics; various feedback topologies; oscillator and op-amp circuits; and rectifiers and filter circuitry.

Prerequisites: EE 231 and EE 332 taken concurrently.

Elective Course in Major * 3 credits

Spring - 16 Credits

This second course of the electronics sequence presenting concepts of feedback, oscillators, filters, amplifiers, operational amplifiers, hysteresis, bi-stability, and non-linear functional circuits. MOS and bipolar digital electronic circuits, memory, electronic noise, and power switching devices will be studied.Spring

Prerequisites: EE 332 

Application of the design techniques in the engineering profession. Electrical engineering project and program management and evaluation including computer assisted tools for planning and reporting, design-to-specification techniques and economic constraints.

Prerequisites: EE 336

This course will accompany EE 333 course dealing with laboratory experience of designing, evaluating and simulation of source and emitter coupled logic circuits, output stages and power amplifiers, negative feedback amplifiers, oscillator circuits, Multivibrators, Schmidt Trigger, 555 timer application to Multivibrators, Memory circuits, CMOS logic circuits, signal generating and waveform shaping circuits.

Prerequisites: EE 332, EE 333

Vector fields. Electrostatic charges, potential and fields; displacement. Steady current/current density; magnetostatic fields, flux density. Materials properties. Faraday's Law and Maxwell's equations. Skin effect. Wave propagation, plane waves, guided waves. Radiation and antennas. Transmission line theory.

Prerequisites: EE 231, MATH 223, MATH 321 and PHYS 222

Signals and Systems, Fourier transforms, Parseval's theorem. Autocorrelation functions and spectral density functions. Information theory. Noise and noise figure, probability and statistics. Transformation of random variables, probability of error and bit error rate. Modulation and demodulation. Overview of analog, sampled analog and digital communication systems. Spread spectrum systems.

Prerequisites: EE 341, MATH 223

Theory and principles of linear feedback control systems. Analysis of linear control systems using conventional techniques like block diagrams, Bode plots, Nyquist plots and root-locus plots. Introduction to cascade compensation: proportional, derivative and integral compensation. State space models.

Prerequisites: EE 341 

Measurement techniques using the oscilloscope, spectrum analyzer and network analyzer. Signals and spectra. Frequency response. Noise and noise figure measurements. Intermodulation products. Amplitude and frequency modulation/demodulation. Sampling, aliasing, and intersymbol interference. Bit error measurement.

Prerequisites: Concurrent with EE 353

Laboratory support for EE 358. Experimental evaluation of basic control system concepts including transient response and steady state performance. Analog and digital computers.

Prerequisites: EE 341 and concurrent with EE 358

Fourth Year

Fall - 16 Credits

Examines decision making by the individual firm, the determination of prices and wages, and current problems facing business firms.

Prerequisites: none

Goal Areas: GE-05

Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of financial statements, time value of money, decision making tools, cost of capital, depreciation, project anaysis and payback, replacement analysis, and other engineering decision making tools.

Prerequisites: Advanced standing in the program

The design and organization of engineering projects. Project proposals, reporting, feasibility studies, and interpretation. Specification preparation, interpretation, and control. Issues involving creativity, project planning and control, and intellectual property rights. Students enrolled in this course must initiate and complete a design project in a small team format.

Prerequisites: EE 337 and senior standing 

Electrical power and magnetic circuit concepts, switch-mode converters, mechanical electromechanical energy conversion, DC motor drives, feedback controllers, AC machines and space vectors, permanent magnet AC machines and drives, induction motors and speed control of induction motors, stepper motors.

Prerequisites: EE 230 

Elective Course in Major * 3 credits

General Education Course * 3 credits

Spring - 14 Credits

Completion of design projects and reports. Lectures on ethics, issues in contracting and liability, concurrent engineering, ergonomics and environmental issues, economics and manufacturability, reliability and product lifetimes. Lectures by faculty and practicing engineers.

Prerequisites: EE 467 and Senior Standing

Elective Course in Major * 3 credits

Elective Course in Major * 4 credits

General Education Course * 3 credits

Elective Course in Major * 3 credits